
Lightweight Platform for Internet of Things with
support for CoAP Block-wise Transfer

Namrata Pawar, Madhuri Wakode

Department of Computer Engineering
Pune Institure of Computer Technology, Pune, India

Abstract— To make Internet of Things Platform lightweight,
there is need of lightweight software and hardware
components. CoAP(Constrained Application Protocol) is low
power consumption and low energy communication protocol
for constrained environment. We built the lightweight IoT
platform using CoAP. We also enhance the platform with
CoAP Block-wise transfer feature. Sometimes applications
need to transfer larger payload than the payload that fits into
single message. This type of data slicing is handled well at
application level than lower level (e.g. IP layer or adaptation
layer). In CoAP, Block1 and Block2 options are provided for
transferring request payload and response payload
respectively in block-wise fashion. The lightweight IoT
platform is built using Node.js. We implement Block1 feature
for node-coap library which is CoAP implementation for
Node.js.

Keywords— CoAP, Internet of things, Node. js, Visualization,
Virtualization.

I. INTRODUCTION

 The IoT devices work in constrained environment i.e.
low memory and power. Hence, the platform should be
lightweight and since these devices need to interact with
each other on Internet, the communication protocol should
also be lightweight. Most IoT platforms are heavy-weight
and they require proprietary protocols. The lightweight IoT
platform uses node.js and mongoDB which are open source
software [1]. This work can be enhanced with CoAP, which
is low energy protocol for M2M environment [5].
There is limit on the maximum data size that can be sent in
the CoAP message. CoAP works well for small messages
e.g. sensor outputs. Sometimes applications require to send
large data through request or response. CoAP is based on
UDP and UDP needs IP fragmentation to send data larger
than MTU. This kind of fragmentation lowers the
performance of constrained networks. The data slicing can
be managed better at application layer than lower layers. So
in the CoAP, block-wise transfer feature is provided.
Payload can be sent with both request and response. For
request payload block1 option is used and for response
payload block2 option is provided [6].
We implemented lightweight IoT platform using CoAP
focusing on main features of IoT platform which are
virtualization, visualization, database and REST API. This
platform is made up of Node.js which is server side
javascript technology and MongoDB which is a No SQL
type databse [1].

II. SYSTEM ARCHITECTURE

 Our system architecture is comprised of three layers.
Hardware layer : This layer contains sensors and actuators.
These IoT devices communicate with web server
through Ethernet or wifi. These devices send their data to
server. We will use RaspberryPi and DHT11 sensors.
RaspberryPi is a single-board computer and DHT11 are
sensors for measuring temperature and humidity.
Co-Ordination Layer : This layer contains web server
which processes data coming from IoT nodes and stores
data in the database. The nodes use CoAP for
communication. We use Node.js to build web-server.
Through web page user can access IoT devices and
virtualize them. Data coming from sensors is stored in
MongoDB database. The IoT devices communicate using
RESTful API. Like HTTP, CoAP also supports REST
architecture. Sensors devices send their status data to the
web server through http/coap post request. Web server
stores this data in the MongoDB database.
Application Layer : This layer is comprised of applications
and users of systems. Through Internet user can access
devices and control them. e.g. User can on/off bulbs in the
home through web page. Also user can create chart using
the database kept for history.

Figure 1 System Architecture.

Namrata Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1036-1040

www.ijcsit.com 1036

II. METHOD

Figure 2 explains algorithm for CoAP block1 transfer.

Figure 2. Algorithm for CoAP Block1 transfer

III. IMPLEMENTATION

Hardware components : Actual lightweight platform
implementation setup will be done with RaspberryPi and
DHT11 sensors. Currently we are simulating the sensor
results.
Software components : Operating system - debian
GNU/Linux,
Node.js - version v0.10.29,

 MongoDB - version 2.4.10.

A. Virtualization and Server using node.js
 Virtualized icons of IoT devices are displed on web

page. Through web page user can access devices. e.g. User
can on/off bulb using the touching the icon on web page.

 Node.js is server side scripting technology which is built
on google's V8 engine. Node.js is event-driven, single
threaded and asynchronous framework. It is designed to
perform fast and focusing on low memory consumption.
Figure 3 and Figure 4 show how to run simple web server
using http and coap respectively.
The core logic of starting HTTP based server on default
port (port 80) can be seen above.
app :- Its a global app configuration and is used from
express middle ware.
http:- Its a module (npm install http) which is used to
support

HTTP protocol.
B. With CoAP, to start a similar server but using CoAP
protocol instead of HTTP, following code is used:
coap :- It's a module(npm install coap) which is used to
support coap.

B. Database using MongoDB

MongoDB is referred as NoSQL database as it does not
use traditional relational model of SQL. It is open source
and cross platform database developed for fast execution of
queries. Figure 5 shows how to insert data in the database
using mongodb.

var app = require('../app');

var http = require('http');

var port = normalizePort(process.env.PORT || '80');

var server = http.createServer(app);

Figure 3 : Running HTTP server

var coap = require ('coap');
var server = coap.createServer(function(req, res)
server.listen()
Figure 4 Running CoAP server

Var db = require ('mongodb').MongoClient
MongoClient.connect(url , function (err, db){
 if(err)
 console.log(err);
 else{
 data = JSON.parse(req.payload);
 console.log("Successfully connected to
the database");

db.collection('Temperature').insert({"Value":data.Value ,

“Time:data.Time”})
 db.close();
 }
})
Figure 5 : Inserting sensor data to the MongoDB database

Namrata Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1036-1040

www.ijcsit.com 1037

mongodb : Node.js module for MongoDB
MongoDb provides simple API for accessing database
(create, insert, update, delete).As shown in figure 4. data
coming from temperature sensor is stored in the
table(collection) Temperature. We can easily access the
data as shown in Fig 6.

C. RESTful API
As shown in the figure 7. CoAP post method is used to
transfer data between devices. CoAP POST request is
designed to send enclosed data within body to the web
server.

D. Visualization

To implement visualization we use Plotly. Plotly
provides Node.js library for making charts. It provides a
way to visualize a data on web site. We can put MongoDB
data into chart using Plotly.

E. CoAP Block-wise Transfer
We implemented Block1 feature for node-coap library.
Block1 option is necessary when there is a payload larger
than 1024 bytes to be sent through request. This option can
be used with POST and PUT method as payload within the
request can be transferred using these two methods only.

1)Structure of block option
When request payload is larger than 1024 bytes the 'Block1'
option is enabled in the request.The block1 option carries
three fields of information- Num, M, SZX.
Num - Number of block
M - Whether more blocks are following or not
SZX - Size of block in bytes
Block option value is 0 to 3 bytes unsigned integer. Its first
three least significant bits gives size of block which is
encoded value from 0 to 6 (i.e. 0 for 2^ 4 bytes to 6 for 2 ^

10 bytes). Actual block size is calculated as 2 ^ (szx+4).
The M bit (4th least significant bit) indicates whether there
are more blocks or not and Num field is obtained by
dividing block value by 16 [6].

2) Usage
Descriptive usage (Block1 option in request)-
Num - Number of block which is provided ,
M (more bit flag) - when unset indicates that there are no
more blocks to transfer and
SZX - size of the block being provided.

Control usage of block1 (Block1 option in
acknowledgement)-
In the atomic fashion blocks are buffered at the server and
written to the destination when all the blocks received.. In
stateless fashion block is written to destination immediately
when received, it is not buffered.

We implemented both atomic and stateless server.
Num- Number of block which is being acknowledged,
M - if set then indicates that body of message is buffered
(atomic fashion) and if unset indicates that block is written
to the destination (stateless fashion).
SZX- size of block being acknowledged.

Figure 8 Simple Atomic POST Request

Figure 8 shows the simple atomic block-wise POST
request. The meaning of atomic is that the provided
resource representation is changed at the server side when
all the payload blocks will arrive. CON is Confirmable
message, MID is message ID, ACK is acknowledgement,
2.31 status tells that message body is buffered at server,
2.04 status tells
that resource has been changed with all blocks of data. In
case of failure server should return the error code '4.08'.[6]

 IV. RESULTS
 Web page containing virtualized icons of devices is as
shown in the Figure 9.
We implemented http client-server using node.js http
library and CoAP client-server using node-coap library. We
compared http packet size and coap packet size using
Wireshark. The
Results are shown in the Figure 10 and 11.

namrata@debian:~/working/IoT$ mongo
MongoDB shell version: 2.4.10
connecting to: test
> db.Temperature.find()
{ "Value" : 19, "Time" : 1453879038967, "_id" :
ObjectId("56a86efff8233e89692ffb54") }
{ "Value" : 21, "Time" : 1453879038960, "_id" :
ObjectId("56a86efff8233e89692ffb55") }

Figure 6 : View database

var options = {
 host : "localhost",
 pathname : "/insert",
 method : "POST"
 headers: {
 'Content-Type': 'application/x-www-form-
 urlencoded',
 'Content-Length': Buffer.byteLength(data),
 }
 };
var req = coap.request(options);
req.write(JSON.stringify(data));

Figure 7 :CoAP POST request

Namrata Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1036-1040

www.ijcsit.com 1038

As we can see in the figures 10 and 11 HTTP requires 201
bytes to post some data from client to server and CoAP
requires 72 bytes to post same data.

We implemented block1 feature and sent image of size
3.4kB through CoAP POST request. As the image is larger
than 1024
bytes, block1 option is enabled and image is sent using 4
blocks of 1024 bytes. The Wireshark statistics for block1
option with simple atomic POST request is shown in figure
12.

The Wireshark statistics for block1 option with stateless
POST request is shown in figure 13.

Figure 14 Accessing devices from web page

V. CONCLUSIONS

 In this paper, we presented lightweight IoT platform
with support for CoAP Block1 transfer, developed by
node.js using
constrained application protocol as an alternative to
conventional HTTP method. With the use of new improved
lightweight IoT platform, device's energy can saved by
sending the same information with much smaller packet
overhead. Our experiments suggest that 65% of overhead
reduction can be achieved using CoAP with lightweight IoT
platform.
We optimized the framework for large size payload. e.g.,
IoT device which periodically sends captured images to
web server. Thus, we provided block1 support for Node.js.
We can further optimize the system to use 6LoWPAN
which is an acronym of IP6 over Low power Wireless
Personal Area Networks. Also we can add DTLS security to
the platform.

ACKNOWLEDGMENT

 I would like to thank ME Computer department, PICT.

Figure 11 Wireshark statistics for CoAP request

Figure 9. Vitualized Icons of IoT devices

Figure 12 Atomic Block1 Transfer

Figure 10 Wireshark statistics for HTTP request

Figure 13 Stateless Block1 Transfer

Namrata Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1036-1040

www.ijcsit.com 1039

REFERENCES
 Conference References
[1]. Young Ju Heo, Sung Min Oh, Won Sang Chin, Ju Wook

Jang, "A Lightweight Platform Implementation for Internet of
Things",3rd International Conference on Future Internet of Things
and Cloud 2015.

[2] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, "Contemporary
Internet-of-Things platforms", http://arxiv.org/abs/1501.07438, Jan
2015, technical report.

[3] Gubbi, J.Buyya, R.Marusic, S.Palaniswami, "Internet of Things
(IoT): A vision, architectural elements, and future directions" Future
Generation Computer Systems, 29(7), 1645-1660.

[4] Kovatsch, Matthias, Simon Duquennoy, and Adam Dunkels, "A low-
power CoAP for Contiki",Mobile Adhoc and Sensor Systems
(MASS), 2011 IEEE 8th International Conference on. IEEE, 2011.

 Website References
[5] https://tools.ietf.org/html/rfc7252
[6] https://datatracker.ietf.org/doc/draft-ietf-core-block/
[7] https://github.com/mcollina/node-coap
[8] www.tutorialspoint.com/nodejs/
 [9] docs.mongodb.org/manual/reference/sql-comparison
[10] https://plot.ly/nodejs/
Book References
[11] Cantelon, Mike, et al. Node. js in Action. Manning, 2014.

Namrata Pawar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1036-1040

www.ijcsit.com 1040

